Equivalence Checking in C-based System-level Design by Sequentializing Concurrent Behaviors

نویسندگان

  • Thanyapat Sakunkonchak
  • Takeshi Matsumoto
  • Hiroshi Saito
  • Satoshi Komatsu
  • Masahiro Fujita
چکیده

In system-level designs, since many incremental refinements are applied to the designs, equivalence checking between each refinement should be applied. However, proving whether two concurrent designs are equivalent is a difficult task, not to mention that the concurrent design itself can be error-prone. In this paper, we propose an equivalence checking method for C-based descriptions of systemlevel designs by sequentializing the concurrent behaviors. Before sequentializing concurrent behaviors, we need to check that the design must not contain neither deadlock nor race condition. After the sequentialization, equivalence checking is performed by symbolic simulation. To show that our methodology can be applied to practical designs, we experiment with some SpecC designs developed by University of California Irvine (UCI). The results show that the proposed method is promising. Although the size of some designs are large, with heuristic search for concurrency and synchronization, the size of designs are reduced accordingly and hence we can perform equivalence checking with the sequentialized ones.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Equivalence Checking a Floating-point Unit against a High-level C Model (Extended Version)

Semiconductor companies have increasingly adopted a methodology that starts with a system-level design specification in C/C++/SystemC. This model is extensively simulated to ensure correct functionality and performance. Later, a Register Transfer Level (RTL) implementation is created in Verilog, either manually by a designer or automatically by a high-level synthesis tool. It is essential to ch...

متن کامل

Equivalence Checking of a Floating-Point Unit Against a High-Level C Model

Semiconductor companies have increasingly adopted a methodology that starts with a system-level design specification in C/C++/SystemC. This model is extensively simulated to ensure correct functionality and performance. Later, a Register Transfer Level (RTL) implementation is created in Verilog, either manually by a designer or automatically by a high-level synthesis tool. It is essential to ch...

متن کامل

Sequential equivalence checking between system level and RTL descriptions

Sequential equivalence checking between system level descriptions of designs and their Register Transfer Level(RTL) implementations is a very challenging and important problem in the context of Systems on a Chip (SoCs). We propose a technique to alleviate the complexity of the equivalence checking problem, by efficiently decomposing it using compare points. Traditionally, equivalence checking t...

متن کامل

Reachability checking in complex and concurrent software systems using intelligent search methods

Software system verification is an efficient technique for ensuring the correctness of a software product, especially in safety-critical systems in which a small bug may have disastrous consequences. The goal of software verification is to ensure that the product fulfills the requirements. Studies show that the cost of finding and fixing errors in design time is less than finding and fixing the...

متن کامل

Error Diagnosis in Equivalence Checking of High Performance Microprocessors

We describe techniques for diagnosing errors in formal equivalence checking of RTL and transistor level models of high performance microprocessors at Freescale Semiconductor Inc. We use Symbolic Trajectory based Evalaution (STE) for combinational equivalence checking. STE accurately captures transistor level behaviors. We use simulation based error diagnosis techniques and present a seamless in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007